

CFN Beowulf cluster facility

Internal report 1/2005

CFN/IST

Tiago Pereira

Jorge Ferreira

Horácio Fernandes

This document describes CFN PC Linux cluster — Orionte — in three ways: a)
hardware assembling, b) software assembling, c) user operation. Thus, it is
helpful to: a) physical reproduction of the cluster, b) software installation and
administration of new clusters, c) operation by engineers and physicists.

Contents

1. Software user guide: mpi, idl, matlab, c, fortran, java, mpi for java

2. Production: hardware, assembling, shopping list

3. Administrator software, software list

4. Specifications

— 2 —

1 Software user guide.............................3

Logging in to Orionte.........................3

Copying file to and from Orionte.......3

On windows3

On Linux ..3

Paths...4

Physical composition4

MPI ..4

Writing C parallel programs4

Compiling C parallel programs......5

Writing fortran parallel

programs ..5

Compiling fortran parallel

programs ..5

Writing java parallel programs5

Compiling java parallel

programs ..6

Launching the mpi environment6

Running the parallel program7

Inspecting currently running

parallel programs7

Killing a running parallel

program..7

Shutting down the mpi

environment7

Running programs with specific

node allocation7

Using the batch queue system............7

Using graphic console on

windows ...8

IDL...9

Graphical enviroment9

Using IDL9

Documentation...............................9

Matlab ..9

Setup ..9

Using Matlab noninteractively.......9

Using Matlab interactively...........10

Documentation.............................10

List of available software.................10

2 Production ...10

Components assembling10

Choosing components12

Cooling...12

Copper blocks13

Pipes...14

Water pump..................................14

Water chiller14

Sensors ...14

Thermal and electrical power...........15

Hardware shopping list (one

module) ..16

3 Administrator software16

Linux ..16

Openmosix17

Remote boot18

Motherboard bios configuration ..18

Dhcp server18

Tftp server....................................18

Pxelinux19

Nfs server19

Ramdisks......................................19

Wakeonlan20

Ntp (network time protocol)20

Monitoring system temperatures......20

Adding a new user to the cluster......20

Providing free ssh traffic inside

the cluster ...21

Providing rsh....................................21

Adding a new node to the cluster.....22

Installed software list22

4 Developer notes22

5 Specifications....................................23

— 3 —

1 Software user guide

Logging in to Orionte

Orionte is located at:

193.136.136.59

or alternatively at:

orionte.cfn.ist.utl.pt

Users can reach it with any ssh client.

If you are on Windows, putty is an

acceptable one, freely distributed at

http://www.chiark.greenend.org.uk/

~sgtatham/putty/download.html

If you are on Linux, you’ll just need to

type

shell > ssh orionte.cfn.ist.utl.pt

at the console and then type your

username and password.

Copying file to and from
Orionte

This section explains how to copy files

from one’s personal computer to Orionte

and vice-versa. This is accomplished by

using a sftp client.

• On windows

If you have not done so yet, download

an sftp client from the internet. Pstfp.exe

is a good enough choice and is freely

available at:

http://www.chiark.greenend.org.uk/

~sgtatham/putty/

download.html

After downloading, execute the file

psftp.exe. You can now enter

Orionte’s IP address, your user name

and password:

psftp: no hostname specified; use

"open host.name" to connect

psftp> open tpereira@193.136.136.59

Using username "tpereira".

Using keyboard-interactive

authentication.

Password:

Remote working directory is

/home/tpereira

You are now logged in to Orionte and

can start uploading and downloading

files.

To copy from Orionte:

psftp> lcd c:\myLocalDir

New local directory is

c:\myLocalDir

psftp> cd myRemoteDir

Remote directory is now

/home/tpereira/myRemoteDir

psftp> get myRemoteFile

remote:/home/tpereira/myRemoteDir/

myRemoteFile => local:myRemoteFile

To copy to Orionte, use:

psftp> put myLocalFile

local: myLocalFile =>

remote:/home/tpereira/myRemoteDir/

myLocalFile

• On Linux

Most Linux distributions have by default

a sftp client. If yours does not, please

install one (you can follow your

distribution’s documentation).

To upload and download files, just do:

shell > sftp tpereira@193.136.136.59

Connecting to 193.136.136.59...

Password:

sftp> lcd myLocalDir

sftp> put myFile

Uploading myFile to

/home/tpereira/myFile

On every sftp client, the user can, at any

time, get help by typing:

psftp> help

...

— 4 —

Paths

Important itens that the user should have

in his PATH variable are:

/opt/mpich2-1.0.2/bin

/opt/sun-jdk-1.4.2.06/bin

/opt/intel/compiler80/bin

/usr/local/bin

/usr/bin

Important itens that the user should add

to his CLASSPATH variable are:

.

/opt/opensourcephysics

/opt/mpiJava/lib/classes

This can be accomplished by appending

the user startup script, /$HOME/.bashrc,

as in the following example:

export PATH="$PATH:/opt/mpich2-

1.0.2/bin"

export

CLASSPATH=".:/opt/opensourcephysic

s:/opt/mpiJava/lib/classes"

Physical composition

When running jobs in Orionte, please

take into account that:

• there are 16 nodes, named: master,

node1, ... node15,

• interconnection is provided by a 1Gbit

star topology switch, so programs

have equal bandwidth from any node

to any node,

• only some nodes have storage,

although storage is available through

nfs, in all nodes:

 1. master node has 100 GBytes

mounted at /home,

 2. node8 has 120 GBytes mounted at

/scratch, available in all nodes through

nfs.

• each node has 1GByte of RAM,

except master which has 2GByte,

• the master node connects to the

outside internet at 100MBit/s,

• each node has a real performance,

measured by Linpack, of 4,5 Gflops,

• currently booted OS is Gentoo linux

and 2.6.10 vanilla kernel.

MPI

We describe here how to use version 2.0

of MPICH.

To run a parallel program, one must:

1. write the code

2. compile the code

3. launch mpi environment

4. launch the program

• Writing C parallel programs

An example C parallel program could

be:

#include <stdio.h>

#include "mpi.h"

int main (int argc, char **argv) {

int buf[1], myRank, nProcs;

int tag;

MPI_Status *stat;

MPI_Init (&argc, &argv);

MPI_Comm_size (MPI_COMM_WORLD,

 &nProcs);

MPI_Comm_rank (MPI_COMM_WORLD,

 &myRank);

tag = 123;

buf[0] = 321;

printf ("My rank is %d of a

 total of %d processes.\n",

 myRank, nProcs);

if (myRank == 0) {

MPI_Recv (buf, 1, MPI_INT, 1,

 tag, MPI_COMM_WORLD, stat);

}

— 5 —

if (myRank == 1) {

MPI_Send (buf, 1, MPI_INT, 1,

 0, MPI_COMM_WORLD);

}

MPI_Finalize();

}

The important sections equal in all mpi

parallel programs written in C are:

1. include mpi.h:

#include <mpi.h>

2. start mpi:

MPI_Init (&argc, &argv);

3. determine the id of current process:

MPI_Comm_rank(MPI_COMM_WORLD,

&myRank);

4. determine the total number of

processes:

MPI_Comm_size(MPI_COMM_WORLD,

&nProcs);

5. actual code:

MPI_Send (...);

MPI_Recv (...);

MPI_Broadcast (...);

6. finalize mpi

MPI_Finalize();

• Compiling C parallel programs

The C compilation can be accomplished

with:

shell > mpicc myProg.c -o

myProg.bin

This compiler includes flags and

libraries needed to mpi functions.

• Writing fortran parallel programs

An example fortran parallel program

could be:

Program Example1_1

implicit none

integer nProcs, ierr

include "mpif.h"

integer myRank, source, dest, tag,

 status(MPI_STATUS_SIZE)

real my_result

dest = 0

source = 1

tag = 123

call MPI_Init(ierr)

call MPI_Comm_rank(MPI_COMM_WORLD,

 myRank, ierr)

call MPI_Comm_size(MPI_COMM_WORLD,

 nProcs, ierr)

write(*,"('Process ',i1,' started

 of a total ',i1)") myRank, nProcs

if(myRank.eq.0) then

call MPI_Recv(my_result, 1,

 MPI_REAL, source, tag,

 MPI_COMM_WORLD, status, ierr)

write(*,"('Result was ',f10.6) ")

 my_result

endif

if(myRank.eq.1) then

my_result = 321.123

call MPI_Send(my_result, 1,

 MPI_REAL, dest, tag,

 MPI_COMM_WORLD, ierr)

endif

call MPI_Finalize(ierr)

stop

end

• Compiling fortran parallel
programs

The fortran compilation can be

accomplished with:

shell > mpif77 myProg.c -o

myProg.bin

This compiler includes flags and

libraries needed to mpi functions.

• Writing java parallel programs

An example java parallel program, could

be:

— 6 —

import mpi.*;

public class Poisson

{

 private int myRank, nProcs,

 dest, source, tag, root;

 private int[] cmd = new int[1];

 public Poisson(String[] args)

 throws MPIException

 {

 dest = 1;

 source = 0;

 tag = 123;

 root = 0;

 MPI.Init(args);

 nProcs=MPI.COMM_WORLD.Size();

 myRank=MPI.COMM_WORLD.Rank();

 if (myRank == 0)

 {

 try

 {

 MPI.COMM_WORLD.Send(cmd, 0, 1,

 MPI.INT, dest, tag);

 }

 catch(mpi.MPIException e){}

 }

 if (myRank == 1)

 {

 try

 {

 MPI.COMM_WORLD.Recv(cmd, 0, 1,

 MPI.INT, source, MPI.ANY_TAG);

 }

 catch(mpi.MPIException e){}

 }

 try

 {

 MPI.COMM_WORLD.Bcast(cmd, 0, 1,

 MPI.INT, root);

 }

 catch(mpi.MPIException e) {}

 try

 {

 MPI.Finalize();

 }

 catch(mpi.MPIException e) {}

 }

}

Important sections, in a java parallel

program, are:

1. Import mpi classes:

import mpi.*;

2. Start mpi:

MPI.Init(args);

3. Determine the id of current process:

myRank = MPI.COMM_WORLD.Rank();

4. Determine the total number of

processes:

nProcs = MPI.COMM_WORLD.Size();

5. Actual message passing:

MPI.COMM_WORLD.Send (...);

MPI.COMM_WORLD.Recv (...);

MPI.COMM_WORLD.Bcast (...);

6. Finalize mpi

MPI.Finalize();

The API can be viewed online at:

http://www.hpjava.org/mpiJava/doc/api/.

• Compiling java parallel programs

Compilation of java parallel programs is

done with:

shell > javac myProg.java

• Launching the mpi environment

To be able to run parallel programs, one

must first launch the mpi environment.

This consists of executing a daemon in

each node, one wants to run the parallel

program in.

The following procedure is required,

only the first time the user uses mpi:

1. create a file named

/$HOME/.mpd.conf

2. write in this file the following line:

secretword=<something>

3. make this file accessible only to its

user, with read and write permissions,

4. create a file named:

/$HOME/mpd.hosts

5. list, in this file, the hostnames of the

nodes in which the user wants to

launch the mpi environment:

node1

node2

node3

node4

— 7 —

...

node15

 Exclude, from this list, the name of

the master node.

Then, the user must proceed in the

following manner to launch the mpi

environment, in four nodes as an

example:

shell > mpdboot -n 4

After having launched the mpi

environment, the user can run parallel

programs.

The list of hosts in which mpi

environment is ready, can be viewed by

typing:

shell > mpdtrace

• Running the parallel program

To run a C or fortran parallel program,

proceed as follows:

shell > mpiexec -np 4 myProg

To run a java parallel program, proceed

as follows:

shell > mpiexec -np 4 java

myJavaProg

• Inspecting currently running
parallel programs

To inspect running programs proceed as

follows:

shell > mpdlistjobs

The output will be, depending on what is

running, something like the following:

jobid = 3@orionte_35892

jobalias =

username = tpereira

host = orionte

pid = 19341

sid = 19340

rank = 0

pgm = ./mpi_bcast_bench

jobid = 3@orionte_35892

jobalias =

username = tpereira

host = node7

pid = 21226

sid = 21225

rank = 1

pgm = ./mpi_bcast_bench

• Killing a running parallel program

To kill the previous running mpi

program, do the following:

shell > mpdkilljob 3

• Shutting down the mpi
environment

To shutdown the mpi environment,

write:

shell > mpdallexit

Running programs with
specific node allocation

Sometimes, it may be of convenience to

be able to run a simple program (not an

MPI program) in a specific node. To do

so, please proceed as follows, after

having launched the MPI environment:

shell > mpiexec -host node15

~/myProg &

This will run the program myProg in

node15.

Using the batch queue
system

Users are highly encouraged to use the

batch queue when runnning programs.

The main differences between running a

program through the batch system and in

a traditional way are:

• automatic migration of processes to

available nodes (nodes that are idle),

according to a determined policy;

• ability for the user to logout from the

cluster while jobs are running;

— 8 —

• both stdout and stderr of the

program that the user is running are

redirected to two text files created by

the batch system.

To launch a program using the batch

system, the user should do the folowing:

shell > qsub myScript

165.orionte.cfn.ist.utl.pt

The output line shows the number of the

batch job, in this case 165.

And myScript is a text file like the

following:

#!/bin/bash

/home/tpereira/tmp/myProg

Where myProg is an executable file

previously compiled.

To inspect currently running jobs, the

user can use the utility qstat:

shell > qstat

Job id Name User Time Use S Queue

----------- --- -------- - - -----

169.orionte myS tpereira 0 Q batch

To get information about the state of all

nodes, the user can use the utility

pbsnodes:

shell > pbsnodes -a

orionte

 state = free

 np = 1

 ntype = cluster

 status = ...

node1

 state = job-exclusive

 np = 1

 ntype = cluster

 status = ...

...

node15

 state = down

 np = 1

 ntype = cluster

 status = ...

After the job has run, the user can see its

output in the file named

myScript.o165:

shell > cat myScript.o165

My output. This output was

generated by myProg.

Using graphic console
on windows

If you are accessing Orionte through

windows and need to use a graphic

console, please proceed as follows:

1. Log on to Orionte;

2. Set a password for your vncserver:

shell > vncpasswd

Using password file

/home/tpereira/.vnc/passwd

Password:

Verify:

Would you like to enter a view-

only password (y/n)? n

3. Execute a vncserver:

shell > vncserver

New 'X' desktop is orionte:3

...

5. Note the number of the display, the

vncserver is working on (in this case

3);

6. Go back to your windows desktop and

download the vnc software from:

www.realvnc.com;

7. Launch the vncviewer;

8. Enter the server name in the following

manner:

orionte.cfn.ist.utl.pt:3

 where 3 is the display number noted

from step 4.

— 9 —

IDL

IDL v. 6.1 (Interactive Data Language)

from Research Systems is currently

installed on Orionte under /opt/rsi

and can be started via the idl command

or the idlde for the Development

Enviroment.

Setup

Before using IDL the user should source

one of the idl setup scripts located under

/opt/rsi/idl/bin/ or, even better,

place the following commands in one of

the shell initialization files located at the

user home directory.

1. bash users should place:

/opt/rsi/idl_6.1/bin/idl_setup.b

ash

 in ~/.profile

2. ksh users must include:

/opt/rsi/idl_6.1/bin/idl_setup.k

sh

 in ~/.profile

3. and csh users should add the following

command:

source

/opt/rsi/idl_6.1/bin/idl_setup

 in ~/.cshrc

• Graphical enviroment

To use the Development Enviroment or

produce any on-screen graphical output

from IDL, the user should start an X

windows server on the client side (e.g.

Exceed on Windows) and use X

tunneling when connecting to orionte

through ssh. Alternatively, you can start

a VNCserver on orionte, as explained

before (section “Using graphic console

on windows”), which can be accessed

using a compatible VNC client on the

user side.

• Using IDL

1. Start idl

shell> idl

2. and type commands like:

IDL> data =

sin(((findgen(62)/10)^2))

IDL> plot, data

IDL> exit

3. or run the interactive demo program

IDL> demo

4. if you prefer to use the development

environment type:

shell> idlde

• Documentation

From the IDL command prompt you can

type a question mark "?" to obtain online

help. Within the Development

Environment point to Help menu on the

top right of the window. For additional

information visit the IDL website at

http://www.rsinc.com/idl/ .

Matlab

Matlab R13, including Matlab 6.5,

Simulink 5.2, Optimization Toolbox,

Signal Processing Toolbox, and Wavelet

Toolbox is available in your default

path.

• Setup

Matlab runs without any special

configuration, however, a user can create

a file .matlab under his home directory

with additional personal preferences.

• Using Matlab noninteractively

To run Matlab noninteractively just type:

shell> matlab -nodisplay

<matlabscript.m

— 10 —

• Using Matlab interactively

To run Matlab interactively, proceed in

one of the following manners:

1. Without graphical support just type:

shell> matlab -nodisplay

2. If graphical support is needed

 To be able to interact graphically with

matlab, the user should start a X

windows server on the client side (e.g.

Exceed on Windows) and use X

tunneling when connecting to orionte

through ssh. Alternatively, you can

start a VNCserver on orionte, as

explained before (section “Using

graphic console on windows”), which

can be accessed using a compatible

VNC client on the user side.

 To start matlab just type:

shell> matlab

• Documentation

Type help to get online help when using

matlab from the command prompt or

helpwin if a graphical environment is

active. For additional information on

Matlab visit Mathworks website at

http://www.mathworks.com.

List of available software

• Java SDK 1.4.2_06 (Sun

Microsystems)

• Gnu CC 3.4.3 – c and c++ gnu

compiler

• ICC e IFORT – Intel compilers

• MPICH 2-1.0.2 – MPI Chameleon

distro

• MPICH 1.1 – MPI Chameleon distro

• mpiJava – MPI ported to java

• OpenSourcePhysics – java library for

physicists

• MatLab 6.5.0.180913a Release 13

• Math Kernel Library 7.2.1 for Linux –

Intel linear algebra library

• BLAS e ATLAS – Linear algebra

libraries

• FFTW – Parallel fast fourier transform

library

• GSL (gnu scientific library) –

scientific library

• gnuplot – graphic program

• emacs – text editor

2 Production

In this section, we discuss how to build

Orionte, regarding mechanical and

cooling details.

Components assembling

In building Orionte, four objectives are

taken into account:

• low cost,

• scalability,

• performance,

• compacting.

Thus, we have decided to use normal PC

motherboards with Pentium 4 processors

and Gigabit ethernet.

Logical design

Orionte is build by modules of eight

nodes, each module having:

— 11 —

8 CPU Intel P4 3GHz FSB
800MHz

Memory 9 GByte (8 x 2 x
512Mb + 1GByte)

8 network
adapters

1Gbit (onboard)

8 motherboards Intel D865GLC

1 hardrive Western Digital
120 Gb

8 power sources Sparkle Power
FSP200-50PL

Water pump 1000 l/h

This arrangement comes from the

dimensions of the 6U rack we use: 8

boards plus one harddrive fit in one rack.

The first node on the first module has an

additional network interface, for access

from outside and the first node in each

module has an additionally 1GB RAM,

for these nodes will have inevitably

more usage.

Every other node contains:

1 processor P4, 3 GHz FSB 800MHz

Memory 1 GB DDR (2x512Mb)

Network
adapter

1Gbit (onboard)

Additionally, it is needed:

Cooling Water chiller
(~1000 Watts/module)

Network

Switch USRobotics
1 Gbit, 24 ports
(sufficient for hree
modules)

Schematic (front)

Schematic (top)

Front

Top

Back

— 12 —

Schematic design of 48U cabinet

The 6U racks can be accommodated in a

48U cabinet, for future scaling

48U cabinet containing one module
and one administration terminal

Choosing components

When choosing components, one must

consider:

• performance,

• cost,

• assembling problems.

About the motherboard, we have:

• the factor form, for it must fit in the

6U rack,

• the processor to use,

• 1 Gbit network adapter onboard is a

must.

The power sources must:

• be able to deliver enough power for

one motherboard and one hardrive.

Most power sources do the job,

• be small enough to fit in the rack.

Most power sources aren’t this small.

The water pump must also be small

enough to fit in the rack.

Cooling

The cooling system for the processors

was design with the following objectives

in mind:

• efficiency,

• scalability,

• compacting.

The adopted system was:

• a thin copper block for each CPU,

• compressed air pipes for carrying

water,

• 1000 l/h pump in each module,

• one water chiller for the whole cluster.

Complete cooling system

— 13 —

A mixture of distilled water with 5~10%

of ethylene glycol is used as cooling

fluid. The use of such a mixture is

absolutely necessary to avoid the

growing of seaweed. Other mixtures can

be used, but one should avoid at all cost

products that react with metals (like

bleach). Car radiator cooling fluid is also

a good choice.

• Copper blocks

The copper blocks were designed to be

small and efficient.

Copper block

Copper block on top of processor

Copper block – technical design

The production of these blocks has 7

phases:

1. cutting of the copper pole, in square

pieces with 40 x 40 mm,

2. drilling of three 5 mm holes for water

flow,

3. opening of two M6 threads,

4. closing of one hole by welding of

brass pellet,

5. drilling of 3,5 mm hole for fixating the

block,

6. opening M4 thread,

7. polishing face for contact with CPU

with sand paper number 1200.

Drilling of 5 mm hole
in copper block with drilling tool

Polishing of a copper block
with sandpaper

Total time of production has been

evaluated in 0,5 hours per block.

The thermal resistance of the block has

been calculated from the following data:

• cpu power at idle: 51W,

• cpu power at full load: 105W,

• cpu temperature difference between

idle and full load states: 13 ºC.

⇔=∆ PRT th .

⇔

=+

=
⇔

th

th

RT

RT

.10513

.51

— 14 —

⇔=⇔
54

13
thR

124,0 −
=⇔ JKRth

• Pipes

By using compressed air accessories, we

have achieved a cheap, yet very reliable

water flowing system.

Raccors for pipe connection

Collector

Pipes 4 and 13 mm

These pipes are wide enough for our

needs of water flow and very malleable,

which is very convenient.

• Water pump

Aquarium pumps are made for 24 hour

operation and extremely silent. Thus,

this is ideal for a cluster.

One has to keep in mind, that although

the manufacturer says the pump has a

flow of 1000 l/h, the effective flow of

this pump will be significantly smaller

when all the water pipes are assembled,

and only measurable by means of a flow

meter.

In our case, the effective flow is 220 l/h.

Aquarium water pump

• Water chiller

Although an expensive piece of

equipment, the cost of the water chiller

can be divided by a large number of

nodes, seen as commercial available air

conditioning water chillers easily reach

10 KW of cooling power. This is enough

cooling power for one hundred

processors at current processor power

dissipation.

This equipment also has the advantage

of not depending on atmospheric

conditions.

Water chiller for cooling of 16 nodes

• Sensors

The first module is equipped with a flow

meter and two temperature sensors.

— 15 —

Flow meter RS 256-225

Temperature sensor LM35

One temperature sensor is at the cold

water inlet and the other is at the hot

water outlet (from the point of view of

the module).

The idea of equipping one module with

these sensors is to monitor hardware in a

direct way. Seen as both modules are

similar, there is no point in mounting

sensors in both.

The LM35 is an IC in a TO-92 package.

One pin of this IC has been welded to a

piece of 10 mm copper pipe.

Temperature sensor

Flow meter

Thermal and electrical power

The water suffers a raise in temperature

of 3,3ºC, between the inlet and outlet of

one module, in a situation of full load.

And the flow is 220 l/hour. So, we have:

W

lKJKsl

CvdifflowP watertemp

841

41803,3061,0 111

=

××=

××=

−−−

This is the power dissipated by the water

chiller to the atmosphere, if it is mounted

outside, or to the room if not.

In idle situation, we have 1,6ºC between

cold and hot water and the same flow:

W

lKJKsl

CvdifflowP watertemp

408

41806,1061,0 111

=

××=

××=

−−−

For one module, the electricity

consumption is:

Electrical power consumption
for different sets of nodes

State
Current

AC
Power

idle 2,33 A 505 W

1 x 100% 2,62A 568 W

2 x 100% 2,92A 634 W

3 x 100% 3,30A 716 W

4 x 100% 3,55A 770 W

5 x 100% 3,78A 820 W

6 x 100% 4,07A 883 W

7 x 100% 4,40A 955 W

8 x 100% 4,66A 1011 W

Joining all data in one table, we can see

how much heat is dissipated inside the

room, and how much by the chiller:

Electrical power consumption and heat
dissipation for one module

State
Electrical

power
consump.

Hest
dissipated
by chiller

Heat
dissipated
by other
comp.

Idle 505 W 408 W 97 W

100% 1011 W 841 W 150 W

— 16 —

Hardware shopping list
(one module)

• rack

order from RS - code 500-412

• rails

order from RS - code 259-7376

• harddrive 120 Gbytes SATA

• 8 motherboards ATX

• 8 processors

• low-profile PCI network adapter:

realtek 8029

• 8 power sources ATX, Sparkle Power,

Model no.: FSP200-50PL

• ~10 m compressed air pipe 4 x 6 mm,

Automair, Rua Marquês de Soveral,

Lisbon.

• ~0,5m copper pole 40 x 10 mm

Rua da Bobadela, Carnaxide

• compressed air colectors, Automair,

Rua Marquês de Soveral, Lisbon.

• raccors 6 mm, Automair, Rua

Marquês de Soveral, Lisbon.

• raccors 12 mm, Automair, Rua

Marquês de Soveral, Lisbon.

• water pump ~1000 l / h, aquarium

store

• reinforced 12 mm hose, hardware

store

• 2 water tap 3/8’’, Automair, Rua

Marquês de Soveral, Lisbon.

• waterchiller, lookup “Air

conditioning”

• ~10 cramps 15 mm, hardware store

• ~20 screws M4 - 30 mm, hardware

store

• ~8 screws M4 - 30 mm, hardware

store

• aluminium pole, U profile, 13 x 8 x 8

mm, hardware store

• teflon, hardware store

• switch, 8 ports, 1Gbit

• copper pipe 10 mm, hardware store

3 Administrator software

In this section, we discuss installation of

software necessary to cluster operation:

• linux configuration,

• remote boot,

• other cluster utilities.

It is aimed to the system administrator.

Linux

We have currently installed in Orionte

two kernel versions:

• 2.4.28

• 2.6.10

Version 2.4.28 is patched with

OpenMosix. Version 2.6.10 is strictly

vanilla and currently booted and

preferred.

Regarding the configuration of the

kernel, one must take into account:

• Processor type and features →

Processor family → Pentium-

4/Celeron(P4-based)/Pentium-4

M/Xeon

• Processor type and features → High

Memory Support → 4GB

• Bus options (PCI, PCMCIA, EISA,

MCA, ISA) → PCI support

• Bus options (PCI, PCMCIA, EISA,

MCA, ISA) → ISA support

• Device Drivers → Block devices →

Loopback device support

• Device Drivers → Block devices →

Network block device support

• Device Drivers → Block devices →

RAM disk support

— 17 —

• Device Drivers → Block devices →

Default RAM disk size (Kbytes) →

65536

• Device Drivers → Block devices →

Initial RAM disk (initrd) support

• Device Drivers → SCSI device

support → SCSI disk support

• Device Drivers → SCSI device

support → SCSI generic support

• Device Drivers → I2O device support

→ I2O /proc support

• Device Drivers → Networking

support → Network device support →

Ethernet (1000 Mbit) → Intel(R)

PRO/1000 Gigabit Ethernet support

• Device Drivers → Networking

support → Networking options →

TCP/IP networking (INET) → IP:

kernel level autoconfiguration

(IP_PNP) → IP: DHCP support

• Device Drivers → Networking

support → Networking options →

Packet socket

• Device Drivers → I2C support → I2C

device interface

• Device Drivers → I2C support → I2C

Hardware Bus support → Intel 801

• Device Drivers → I2C support → I2C

Hardware Bus support → Intel

810/815

• Device Drivers → I2C support → I2C

Hardware Bus support → ISA Bus

support

• Device Drivers → I2C support →

Hardware Sensors Chip support →

National Semiconductor LMxx

• File systems → Second extended fs

support

• File systems → Ext3 journaling file

system support

• File systems → Reiserfs support

• File systems → Kernel automounter

version 4 support

• File systems → Pseudo filesystems →

/proc file system support

• File systems → Pseudo filesystems →

/dev file system support

• File systems → Pseudo filesystems →

Virtual memory file system support

(former shm fs)

• File systems → Network File Systems

→ NFS file system support

• File systems → Network File Systems

→ NFS server support

• File systems → Network File Systems

→ Root file system on NFS

• File systems → Native Language

Support → Codepage 860

(Portuguese)

The kernel is the same for the master

node and for the slaves and modules

have been avoided. What this solution

lacks in optimization, it gains in

simplicity.

The linux distro is Gentoo. It was the

chosen distro because of its robustness

and portage system.

Openmosix

Openmosix is an automatic process

migration extension to the Linux kernel.

It can be installed by patching the kernel

vanilla sources with the openmosix

sources found at http://openmosix.

.sourceforge.net.

The OpenMosix project doesn’t yet,

have support for the 2.6.10 kernel.

Our experience with Openmosix tells us

that:

• it is quite useful for users with

programs of trivial parallelization

(embarrassingly parallel),

— 18 —

• some crashes have occurred,

especially with programs that create a

lot of child processes, with short

duration (example: make).

Because of this problem, openmosix is

currently not available.

Remote boot

The master node must boot before all

other nodes. After master is fully booted,

the following sequence takes place:

• slave is turned on,

• slave broadcasts dhcp request for IP,

next-server IP and bootloader

filename,

• master responds to slave request,

• slave requests bootloader file from tftp

server in next-server IP,

• master sends bootloader file,

• slave executes bootloader file,

• bootloader downloads, from tftp

server in next-server IP, kernel file

and ramdisk compressed file,

• bootloader executes kernel and hands

it over control,

• kernel uncompresses ramdisk, mounts

ramdisk and configures system

according do system configuration

files in ramdisk,

• slave is ready.

This arrangement has two advantages:

• reduces cost by reducing necessary

number of harddrives,

• avoids the problem of synchronizing

the contents of a large number of

disks.

And has one disadvantage:

• it provides reduced storage capability.

• Motherboard bios configuration

These are the guidelines for motherboard

configuration:

Master:

• boot from harddrive,

• when power fails, motherboard should

resume to “last state”,

• wake on net “magic packet” event,

• doesn’t need IDE interface, USB,

floppy, graphic interface memory.

Slave:

• boot from network,

• when power fails, motherboard should

resume to “off state”,

• wake on net “magic packet” event,

• doesn’t need IDE interface, USB,

floppy, graphic interface memory.

• Dhcp server

The dhcp server is:

/usr/sbin/dhcpd

Configuration file is:

/etc/dhcp/dhcpd.conf

Documentation is available with:

shell > man dhcpd

shell > man dhcpd.conf

The configuration file must have one

hardware address to IP address mapping

for each node. Additionally, it must

have the path of the bootloader file and

the IP address of the tftp server.

• Tftp server

The tftp server is:

/usr/sbin/in.tftpd

Configuration file is:

/etc/conf.d/in.tftpd

Documentation is available with:

— 19 —

shell > man in.tftpd

• Pxelinux

This is the bootloader. It is configured

with one file per node. These files are in

the directory:

/tftpboot/pxelinux.cfg/

The bootloader file itself is:

/tftpboot/pxelinux.0

The dhcp and tftp servers must point to

this file.

PxeLinux is free for download at

www.kernel.org/pub/linux/utils/boot/sysl

inux/syslinux-3.07.tar.gz and

documentation is available at the same

site.

• Nfs server

This service is provided by the master,

so that other nodes can have persistent

storage.

The following files implement this

server:

/usr/sbin/exportfs

/sbin/rpc.statd

/usr/sbin/rpc.rquotad

/usr/sbin/rpc.nfsd

/usr/sbin/rpc.mountd

The configuration file is:

/etc/exports

This file must contain a line for each

exported directory.

Documentation is available at:

shell > man nfsd

shell > man exports

• Ramdisks

An argument with the path of the

ramdisk file is passed to the kernel when

each node boots, in the following

manner:

kernel vmlinuz-2.6.10

append root=/dev/ram0 rw

 load_ramdisk=1

 ramdisk_size=65536

 initrd=ramdiskFS_node1.gz

This is an excerpt of a configuration file

for PxeLinux.

Each node has to types of storage:

• volatile (ramdisk),

• non-volatile (nfs mounted directories).

The ramdisk contains the following:

/bin

/etc

/lib

/mnt

/sbin

/var

The following directories are, due to

their large size, not included in the

ramdisk, but instead nfs mounted by the

nodes:

/tmp

/opt

/usr

/home

/var/log

/root

The contents of each ramdisk (one for

each node) are located in the directories:

/tftpboot/ramdisks_uncompressed/no

deXX

where nodeXX is the node’s hostname

this ramdisk belongs to.

And these contents are compiled by the

following script:

#!/bin/bash

if ["$1" = ""]; then

 echo"/tftpboot/mk_ramdisk<#>"

 echo "Onde <#> é o número

 do nó"

 echo "Especifique <#>"

fi

TARGET="/tftpboot/ramdiskFS_nod

 e$1"

— 20 —

dd if=/dev/zero of=/dev/ram0

 bs=1k count=64k

mke2fs /dev/ram0 -b 1024 65536

mount /dev/ram0 /mnt/ramdisk

cp -a

 /tftpboot/ramdisks_uncompres

 sed/node$1/* /mnt/ramdisk/

umount /dev/ram0

if test -f $TARGET.gz

 then rm $TARGET.gz

fi

dd if=/dev/ram0 of=$TARGET

 bs=1k count=64k

gzip "$TARGET"

The idea of using ramdisks has proven to

be robust and efficient and gives the

nodes a certain amount of independence

from the master.

Wakeonlan

This little program does the job of

broadcasting a “magic packet” to the net.

Motherboards that are shut down, but

listening, are woken up by this packet.

The selection of which motherboard one

wants to wake up is made by the MAC

address, in the following manner:

shell > /opt/wakeonlan-0.40/

 wakeonlan -i 192.168.100.255

 00:11:11:48:f5:ab

Sending magic packet to

192.168.100.255:9 with

00:11:11:48:f5:ab

Ntp (network time protocol)

This protocol accomplishes the job of

synchronizing the time of every node.

We have OpenNtpd-2.6.1 implementa-

tion installed.

The executable is:

/usr/sbin/ntpd

which works as server and/or client,

depending on the configuration.

The configuration files are:

/etc/ntpd.conf

/etc/conf.d/ntpd

On the master node, ntpd acts as a client

for an external ntp server (currently

137.120.89.224) and as a server for the

other nodes.

Documentation can be found with:

shell > man ntpd

shell > man ntpd.conf

Monitoring system
temperatures

The CPU and motherboard temperatures

can be monitored with the following

program:

/usr/bin/sensors

Configured in:

/etc/sensors.conf

For this program to work, the kernel

must provide support for I2C bus and for

the sensors that the motherboard

possesses, which vary from board to

board.

Documentation about this program can

be found at:

shell > man sensors

shell > man sensors.conf

Adding a new user to the
cluster

Adding a new user to the cluster

involves 7 steps:

1. Add user in master node

shell > useradd -d /home/manuel

-m -G users manuel

2. Define his password:

shell > passwd manuel

— 21 —

New UNIX password:

Retype new UNIX password:

3. Define which groups he belongs to:

shell > usermod -G wheel manuel

4. Copy the following files

/etc/passwd

/etc/group

/etc/shadow

 to all directories that contain the

ramdisks of all the nodes,

5. Compile the ramdisks,

6. Reboot all nodes.

Providing free ssh traffic
inside the cluster

To allow free ssh inside the cluster, two

things are necessary:

1. that the user public key be in the file:

/$HOME/.ssh/authorized_keys

 and that this file be accessible with

write and read permission to the user

and only with read permission to

others,

2. that the user private key be in the file:

/$HOME/.ssh/id_rsa

 and that this file is only accessible by

the user, with read and write

permissions.

For this, proceed as follows:

shell > ssh-keygen -t rsa

Generating public/private rsa

 key pair.

Enter file in which to save the

 key

 (/home/tpereira/.ssh/id_rsa):

Enter passphrase (empty for no

 passphrase):

Enter same passphrase again:

Your identification has been

 saved in

 /home/tpereira/.ssh/id_rsa.

Your public key has been saved

 in

/home/tpereira/.ssh/id_rsa.pub.

The key fingerprint is:

 5a:cf:18:16:0d:63:84:6c:63:

 aa:48:45:25:d3:d7:9b

Providing rsh

Rsh protocol provides the same as ssh

protocol, but without encryption, thus,

being a lot faster.

For rsh to be available to users, two

things are needed:

• that the following daemons are

running:

/usr/sbin/in.rexecd

/usr/sbin/in.rlogind

/usr/sbin/in.rshd

• that the user has in his home directory

a file named:

.rhosts

 identifying trusted hosts.

The three daemons are run by the super-

daemon:

/usr/sbin/xinetd

Configuration files are:

/etc/xinetd.d/rexec

/etc/xinetd.d/rlogin

/etc/xinetd.d/rsh

Documentation is available at:

shell > man xinetd

shell > man xinetd.conf

shell > man rshd

— 22 —

Adding a new node to the
cluster

Adding a new node to the cluster

involves:

• creating a new ramdisk directory with

all the necessary files:

shell > cd /tftpboot/

 /ramdisks_uncompressed

shell > mkdir nodeXX

shell > cd nodeXX

shell > cp -a ../node1/* ./

• editing of certain files that differ from

node to node,

• compiling the newly created ramdisk:

shell > cd /tftpboot

shell > ./mk_ramdisk XX

• creating a /tmp directory, on the

master node, for the new node:

shell > mkdir

 /tmp/remote_tmps/tmp_nodeXX

• editing the file:

/etc/exports

 on the master node.

The necessary changes in configuration

files are:

• /etc/hosts (all nodes)

 Add new node’s hostname and IP

address,

• /etc/hostname (new node)

 Add new node’s hostname,

• /etc/conf.d/net.eth0 (new node)

 Define new node’s IP address,

• /etc/fstab (new node)

 Define new node’s nfs mount of /tmp

directory,

• /etc/exports (master node)

 Add export for new node’s /tmp

directory.

Installed software list

• Kernel linux (vanilla 2.6.10,

openmosix patched 2.4.28)

• Linux Gentoo

• Java SDK 1.4.2_06 (Sun

Microsystems)

• Gnu CC 3.4.3 – c and c++ gnu

compiler

• ICC e IFORT – Intel compilers

• MPICH 2-1.0.2 – MPI Chameleon

distro

• MPICH 1.1 – MPI Chameleon distro

• mpiJava – MPI ported to java

• OpenSourcePhysics – java library for

physicists

• MatLab 6.5.0.180913a Release 13

• Wakeonlan-0.40 – remote wakeup

• PxeLinux – bootloader for remote

boot

• Math Kernel Library 7.2.1 for Linux –

Intel linear algebra library

• BLAS e ATLAS – Linear algebra

libraries

• FFTW – Parallel fast fourier transform

library

• GSL (gnu scientific library) –

scientific library

• gnuplot – graphic program

• emacs – text editor

4 Developer notes

• The booting scheme should be altered

so that not more than 7 nodes boot

from one node. This would be: node 1

to node 7 booting from node master,

— 23 —

node 9 to node 15 booting from

node 8, etc.

• The cluster could benefit from a

remote hard reset feature, controlled

by the master node through the serial

port, for instance.

5 Specifications

• weight of one module: 16.5 Kg

• weight of cabinet (48 boards): 130 Kg

• dimensions of one module (8 boards):

(L x H x D): 50 x 30 x 40 cm

• dimensions of one cabinet (48

boards): (L x H x D): 60 x 200 x 40

cm

• storage per module (8 boards): 120

Gbytes

• electricity consumption (8 boards):

 400W in idle,

 840W in full load

• performance per node: 4,5 gflops

